KuMo
Documentation for KuMo.
KuMo.AbstractAlgorithm
KuMo.AbstractJob
KuMo.AbstractRequest
KuMo.AbstractResource
KuMo.AdditiveNode
KuMo.ConvexLink
KuMo.Data
KuMo.DirectedTopology
KuMo.EqualLoadBalancingNode
KuMo.FlatLink
KuMo.FlatNode
KuMo.FreeLink
KuMo.IdleStateNode
KuMo.Job
KuMo.Link
KuMo.MultiplicativeNode
KuMo.Node
KuMo.PremiumNode
KuMo.ShortestPath
KuMo.SnapShot
KuMo.State
KuMo.Topology
KuMo.User
KuMo.add_load!
KuMo.capacity
KuMo.clean
KuMo.cond_minmax
KuMo.data
KuMo.execution_results
KuMo.execution_results
KuMo.graph
KuMo.init_execution
KuMo.init_execution
KuMo.inner_queue
KuMo.insert_sorted!
KuMo.job
KuMo.job_distributions
KuMo.make_df
KuMo.marks
KuMo.param
KuMo.pseudo_cost
KuMo.pseudo_cost
KuMo.push_snap!
KuMo.rand_job
KuMo.rem_load!
KuMo.retrieve_path
KuMo.user
KuMo.valid_load
KuMo.vtx
KuMo.AbstractAlgorithm
— TypeAbstractAlgorithm
An abstract supertype for algorithms.
KuMo.AbstractJob
— TypeAbstractJob
An abstract supertype for jobs.
KuMo.AbstractRequest
— TypeAbstractRequests
An abstract supertype for job requests.
KuMo.AbstractResource
— TypeAbstractResource
An abstract supertype for resources in a cloud morphing architecture. Any type MyResource <: AbstractResource
needs to either:
- have a field
capacity::T
whereT <: Number
, - implement a
capacity(r::MyResource)
method.
Optionally, one can implement a specific pseudo_cost(r::MyResource, charge)
method.
KuMo.AdditiveNode
— TypeAdditiveNode{T1 <: Number, T2 <: Number} <: AbstractNode
A node structure where the default pseudo-cost is translated by the value in the param
field.
KuMo.ConvexLink
— TypeConvexLink <: KuMo.AbstractLink
Link structure with a convex pseudo-cost function.
KuMo.Data
— TypeData
Structure to store the information related to some Data
. Currently, only the location of such data is stored.
KuMo.DirectedTopology
— TypeDirectedTopology{N<:AbstractNode,L<:AbstractLink}
A structure to store the topology of a network. Beside the graph structure itself, it also stores the kinds of all nodes and links.
KuMo.EqualLoadBalancingNode
— TypeEqualLoadBalancingNode{T <: Number} <: AbstractNode
Node structure with an equal load balancing (monotonic) pseudo-cost function.
KuMo.FlatLink
— TypeFlatLink <: KuMo.AbstractLink
Link structure with a constant pseudo-cost function.
KuMo.FlatNode
— TypeFlatNode{T <: Number} <: AbstractNode
Node structure with a constant pseudo-cost function.
KuMo.FreeLink
— TypeFreeLink <: AbstractLink
The pseudo-cost of such links is always zero.
KuMo.IdleStateNode
— TypeIdleStateNode{T1 <: Number, T2 <: Number} <: AbstractNode
Node structure that stays iddle until a bigger system load than the default node. The param
field is used to set the activation threshold.
KuMo.Job
— TypeJob <: AbstractJob
The most generic job type.
Arguments:
backend::Int
: size of the backend data to be sent from data location to the servercontainers::Int
: number of containers required to execute the jobduration::Float64
: job durationfrontend::Int
: size of the frontend data to be sent from the user location to the server
KuMo.Link
— TypeLink{T <: Number} <: AbstractLink
Default link structure with an equal load balancing (monotonic) pseudo-cost function.
KuMo.MultiplicativeNode
— TypeMultiplicativeNode{T1 <: Number, T2 <: Number} <: AbstractNode
A node structure where the default pseudo-cost is multiplied by the value in the param
field.
KuMo.Node
— TypeNode{T <: Number} <: AbstractNode
Default node structure, defined by its maximal capacity and the default convex pseudo-cost function.
KuMo.PremiumNode
— TypePremiumNode{T1 <: Number, T2 <: Number} <: AbstractNode
A node structure for premium resources. The param
field set the premium threshold.
KuMo.ShortestPath
— TypeShortestPath <: AbstractAlgorithm
A ShortestPath algorithm.
KuMo.SnapShot
— TypeSnapShot
A structure to take snapshot from the state of network and its resources at a specific instant.
Arguments:
state::State
: state atinstant
total::Float64
: total load atinstant
selected::Int
: selected node atinstant
; value is zero if load is removedduration::Float64
: duration of all the actions taken during corresponding to the state of this snapsolving_time::Float64
: time taken specifically by the solving algorithm (<: AbstractAlgorithm
)instant::Float64
KuMo.State
— TypeState
A structure to store the state of the different resources, e.g. nodes and links, during a simulation.
Arguments:
links::SparseMatrixCSC{Float64, Int64}
: sparse matrice with the links loadsnodes::SparseVector{Float64, Int64}
: sparse vector with the nodes loadsState(n)
: inner constructor given the number of nodesn
State(links, nodes)
: inner constructor given thelinks
andnodes
of an existing state
KuMo.Topology
— TypeTopology{N<:AbstractNode,L<:AbstractLink}
A structure to store the topology of a network. Beside the graph structure itself, it also stores the kinds of all nodes and links.
KuMo.User
— TypeUser{R<:AbstractRequests}
A structure to store a user information. A user is defined as a location (node id).
KuMo.add_load!
— Methodadd_load!(state, links, containers, v, n)
Adds load to a given state.
Arguments:
state
links
: the load increase to be added on linkscontainers
: the containers load to be added tov
v
: node selected to execute a taskn
: amount of available nodes
KuMo.capacity
— Methodcapacity(r::R) where {R<:AbstractResource}
Return the capacity of a resource r
.
KuMo.clean
— Methodclean(snaps)
Clean the snapshots by merging snaps occurring at the same time.
KuMo.cond_minmax
— Methodcond_minmax(x, y, b)
Return the min of x
and y
if b
is false
, and the max of x
and y
otherwise.
KuMo.data
— Methoddata(location)
Construct data at location
. If the location is a collection, a random location is chosen.
KuMo.execution_results
— Methodpost_simulate(s, snapshots, verbose, output)
Post-simulation process that covers cleaning the snapshots and producing an output.
Arguments:
s
: simulated scenariosnapshots
: resulting snapshots (before cleaning)verbose
: if set to true, prints information about the output and the snapshotsoutput
: output path
KuMo.execution_results
— Methodpost_simulate(s, snapshots, verbose, output)
Post-simulation process that covers cleaning the snapshots and producing an output.
Arguments:
s
: simulated scenariosnapshots
: resulting snapshots (before cleaning)verbose
: if set to true, prints information about the output and the snapshotsoutput
: output path
KuMo.graph
— Methodgraph(topo::Topology, algorithm::AbstractAlgorithm)
Creates an appropriate digraph using Graph.jl based on a topology and the requirement of an algorithm.
KuMo.init_execution
— Methodinit_execution(::BatchSimulation)
Initialize a synchronous batch simulation.
KuMo.init_execution
— Methodinit_execution(::InteractiveRun)
Initialize an interactive run.
KuMo.inner_queue
— Functioninner_queue(g, u, j, nodes, capacities, state, ::ShortestPath, ii = 0; lck = ReentrantLock(), demands = nothing, links)
DOCSTRING
Arguments:
g
: a graph representing the topology of the networku
: user locationj
: requested jobnodes
: nodes capacitiescapacities
: links capacitiesstate
: current state of the networkalgo
:ShortestPath <: AbstractAlgorithm
ii
: a counter to measure the progress in the simulationlck
: a lck for asynchronous simulationdemands
: not needed forShortestPath
algorithmlinks
: description of the links topology
KuMo.insert_sorted!
— Functioninsert_sorted!(w, val, it = iterate(w))
Insert element in a sorted collection.
Arguments:
w
: sorted collectionval
: value to be insertedit
: optional iterator
KuMo.job
— Methodjob(backend::Int, containers::Int, data_location::Int, duration::Float64, frontend::Int)
Method to create new jobs.
KuMo.job_distributions
— Methodjob_distributions(; backend, container, data_locations, duration, frontend)
Construct a dictionary with random distributions to generate new jobs. Beside data_locations, the other arguments should be a 2-tuple defining normal distributions as in the Distributions.jl package.
Arguments:
backend
container
data_locations
: a collection/range of possible data locationduration
frontend
KuMo.make_df
— Methodmake_df(snapshots::Vector{SnapShot}, topo; verbose = true)
Make a DataFrame from the raw snapshots.
Arguments:
snapshots
: A collection of snapshotstopo
: topology of the networkverbose
: if set to true, it will print a description of the snapshots in the terminal
KuMo.marks
— Methodmarks(df::DataFrame)
Returns a 4-tuple (a, b, c, d)
that marks the start and end of the nodes
and links
columns in the dataframe.
(a, b)
mark the start and end indices of thenodes
columns(c, d)
mark the start and end indices of thelinks
columns
KuMo.param
— Methodparam(r::R) where {R<:AbstractResource}
Default accessor for an optional parameter for R
. If no param
field exists, returns nothing
.
KuMo.pseudo_cost
— Functionpseudo_cost(cap, charge, resource, param...)
pseudo_cost(r::<:AbstractResource, charge)
Methods to compute the pseudo-cost of various resources.
KuMo.pseudo_cost
— Methodpseudo_cost(r::R, charge) where {R<:AbstractResource}
Compute the pseudo-cost of r
given its charge
.
KuMo.push_snap!
— Methodpush_snap!(snapshots, state, total, selected, duration, solving_time, instant, n)
Add a snapshot to an existing collection of snapshots.
Arguments:
snapshots
: collection of snapshotsstate
: current statetotal
: loadselected
: node where a request is executedduration
: duration of the whole resource allocation for the requestsolving_time
: time taken specifically by the solving algorithm (<: AbstractAlgorithm
)instant
: instant when the request is receivedn
: number of available nodes
KuMo.rand_job
— Methodrand_job(jd::Dict)
Create a random job given a job_distribution dictionary.
KuMo.rem_load!
— Methodrem_load!(state, links, containers, v, n)
Removes load from a given state.
Arguments:
state
links
: the load increase to be removed from linkscontainers
: the containers load to be removed fromv
v
: node where a task is endindn
: amount of available nodes
KuMo.retrieve_path
— Methodretrieve_path(u, v, paths)
Retrieves the path from u
to v
.
Arguments:
u
: source vertexv
: target vertexpaths
: list of shortest paths within a network
KuMo.user
— Methoduser(location)
Construct a user at location
. If the location is a collection, a random location is chosen.
KuMo.valid_load
— Functionvalid_load(s, task, g, capacities, state, algo, demands, ii = 0)
Compute the best load allocation and return if it is a valid one.
Arguments:
s
: scenario being simulatedtask
: task being requestedg
: graph of the network topologycapacities
: capacities of the networkstate
: current state of resourcesalgo
: algo used for computing the best allocation costdemands
: if algo isKuMoFlowExt.MinCostFlow
, demands are requiredii
: a counter to measure the approximative progress of the simulation
KuMo.vtx
— Methodvtx(algorithm::AbstractAlgorithm)
Return the number of additional vertices required by the algorithm
used to allocate resources in the network.